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The flow induced by injection of a given amount of buoyancy or hot fluid from a 
localized source in a viscous fluid is investigated for conditions under which the 
Reynolds number Re is small compared with one, and the dimensionless buoyancy 
or Rayleigh number Ra is large compared with one. Laboratory experiments show 
that the buoyant fluid rises in the form of an extremely viscous ‘thermal’ which 
enlarges with time as a result of entrainment of surrounding fluid. The formation of 
a stable ‘chemical ring’ or torus of passive tracer similar in appearance to high 
Reynolds-number vortex rings is a notable feature of the creeping flow for high 
Rayleigh numbers. The possibility of large variations of viscosity due to temperature 
differences is included. A self-similar model is developed based on a boundary-layer 
analysis of a thin diffusive layer surrounding a spherical thermal for which the flow 
field is given by the exact solution for non-diffusive Stokes’ flow. Experiments at  
2.5 x lo2 < Ra < 2.5 x lo4 and Re < demonstrate the nature of extremely 
viscous thermals, support the similarity solution and enable evaluation of a pro- 
portionality constant. Possible applications of the results to dispersion by viscous 
drops and particularly to  thermal convection in the Earth’s solid mantle are 
mentioned. 

1. Introduction 
The transport of heat away from heated or cooled horizontal boundaries by 

convection at large Rayleigh numbers (> lo5) is recognized to be dominated by the 
intermittent motion of puffs of buoyant fluid away from the surfaces (Howard 1964; 
Elder 1968; Chu & Goldstein 1973; Sparrow, Husar & Goldstein 1970). The puffs of 
buoyant fluid are generally referred to as ‘ thermals ’ or ‘ mushroom ’ shaped structures. 
While most laboratory observations of such behaviour have been made using fluids 
with Prandtl numbers of order 10, recent experiments using high viscosity oils 
(Tritton 1985) indicate that similar intermittent, and even random, motions occur 
when the Prandtl number is as large as lo5, conditions under which inertial forces 
associated with the convective motions are comparable to or less than the viscous 
forces. Similar intermittency and ‘puffs’ of buoyant fluid were seen in numerical 
experiments of high resolution at infinite Prandtl number (Jarvis 1984) (though this 
unsteadiness might have been the result of numerical instabilities). These are 
conditions relevant to thermal convection in the crystalline mantle of the Earth, 
where Reynolds numbers are expected to be, at greatest, 10-13. However, little 
attention has been given to the dynamics or evolution of very viscous thermals. In 
the context of convection in the Earth’s mantle, continuous plumes that would be 
produced by a steady release of buoyancy from a source region (as opposed to the 
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sudden release of a well-defined amount of buoyancy in the form of a thermal) have 
been postulated as a cause of intra-plate volcanism (Morgan 1971). Such plumes are 
generally considered to originate from fixed positions deep in the mantle, and 
probably from a hot, unstable boundary layer at  the bottom of the mantle (e.g. Yuen 
& Schubert 1976; Loper & Stacey 1983). However, given a Rayleigh number of order 
lo7 (based on the full depth of the mantle), it seems likely that such a boundary layer 
may well give rise to structures more closely described as intermittent thermals. 

In order to learn more about the behaviour of thermals in Rayleigh-BBnard 
convection, this article considers the fundamental problem of the motion induced by 
a quantity of buoyancy initially released within a localized region in an unbounded 
and otherwise stationary fluid. The conditions of interest here are those under which 
the Reynolds number of the flow is small. The corresponding inviscid case has been 
studied extensively as a result of its relevance to a wide range of problems in fluid 
mechanics and, in particular, for its applications in meteorology (Scorer 1978). In  the 
inviscid case, the buoyant material rises as a slightly oblate spherical ‘thermal ’ inside 
which the flow is turbulent and outside which the flow is isothermal and irrotational. 
Turbulence is generated by the bulk rising motion driven by buoyancy and causes 
mixing of the buoyant material with the surrounding fluid (Morton, Taylor & Turner 
1956; Turner 1957, 1964,1973). Consequences of the turbulent entrainment are that 
the radius of the thermal increases as the square root of time, the rise velocity 
decreases as t-: and the temperature difference between the thermal and its 
environment decreases as t-t (Scorer 1957; Escudier & Maxworthy 1973; Turner 
1973). The radius also expands linearly with distance travelled, with the half-angle 
9 of expansion given approximately by t an9  = 0.25. This angle is independent of 
the total buoyancy released (at least for cases in which no additional momentum is 
injected at  the source) as the rate of entrainment is proportional to the rise velocity. 
The above similarity solution for vortex rings assumes, and experiments confirm, that 
thermals conserve their total buoyancy and thereby maintain their isolated nature. 

Most work with laminar thermals has involved numerical simulations of the early 
stages in the development of thermals (e.g. Fox 1972). A notable exception is an 
analysis by Morton (1960) of the laminar motion produced by an extremely small 
quantity of buoyancy. The analysis consists of an expansion about the limit of zero 
Rayleigh number Ra, where Ra = B/Kv ,  is based on the injected buoyancy B, the 
thermal diffusivity K and the ambient kinematic viscosity v,. This approach therefore 
describes flow in which radial diffusion of heat dominates over advection. Similarity 
solutions of the momentum and heat equations require the radius and vertical 
position ( z )  of the thermal to scale with the diffusive length ( ~ t ) ?  and predict a flow 
pattern similar to that for a turbulent thermal. However, there is no concentration 
of heat in the circular core of an extremely weak vortex ring. Furthermore, in contrast 
to the result z - Raid for turbulent thermals, Morton found that the height risen by 
weak thermals (in a fluid with Prandtl number Pr = 1)  is directly proportional to the 
Rayleigh number. Schlien & Thompson (1975) carried out experiments with isolated 
laminar thermals in water (Re x 20) at large Rayleigh numbers (Ra = lo3-lo4), and 
found that the flow was approximately self-similar, though only a small amount of 
data was collected. 

Returning to convection at large Rayleigh number of a large Prandtl number fluid 
above a heated boundary, we note that intermittent instability of a thin thermal 
boundary layer will produce thermals or plumes that are likely to have length scales 
and density anomalies comparable to the thickness and density difference across the 
boundary layer. Since the boundary layer becomes unstable when a local Rayleigh 
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number based on these same parameters exceeds a critical value (Howard 1964), we 
conclude that this critical value provides a reasonable first estimate of the Rayleigh 
number for the thermal. For a fluid of constant viscosity the critical Rayleigh number 
is close to lo3, but may be smaller if the hot boundary layer has a reduced viscosity. 
Slightly larger Rayleigh numbers for thermals would be achieved if each thermal drew 
hot fluid from close to the boundary over a finite growth period (Sparrow et al. 1970). 
Thus thermals in creeping flow are not always ‘weak’ in the sense considered by 
Morton (1960), but can have large Rayleigh numbers at which the transport of heat 
is dominated by advection rather than diffusion. 

Viscous thermals are also of interest in the field of chemical engineering, where 
the shape of, and heat and mass transfer from, buoyant drops has been widely 
investigated. However, it appears that exchange by molecular diffusion between the 
drop and its surroundings has been discussed only for the case of immiscible 
(spherical) drops (Kronig t Brink 1951 ; Pan & Acrivos 1968; Brignell 1975), while 
the behaviour of miscible drops in Stokes flow, coupled with diffusion of buoyancy, 
has not been considered beyond a single interesting observation by Kojima, Hinch 
& Acrivos (1984). These authors noted that when a drop of cold viscous liquid fell 
into a warmer, less dense environment with a Reynolds number less than one, it 
opened into a thin spherical cap with a mushroom-like appearance, an evolution 
entirely different from that observed for isothermal drops. In this and a subsequent 
paper (Griffiths 1 9 8 6 ~ )  I will explain this behaviour. 

An additional important parameter to be included in this investigation is a 
viscosity difference between the drop and its environment. A rapid decrease of 
viscosity with increasing temperature is a notable property of almost all fluids with 
large Prandtl number, and particularly of geological materials. Previous approaches 
to the investigation of the motion of hot buoyant material through fluids with 
temperature dependent viscosities have concentrated largely on the problem of a hot 
rigid body moving under a given force or at a given velocity (Marsh 1982,1984 ; Marsh 
& Kantha 1978). When the driving force is sufficiently small, flow about the hot body 
is confined to a thin, mobile low-viscosity boundary layer that lubricates the motion 
of the body (Morris 1982 ; Ribe 1983). Excepting for the latent heat effects on melting, 
this limiting case is equivalent to that in which a hot body melts its way through 
an otherwise solid and rigid environment. At the other extreme, when the driving 
force is sufficiently large, such a thin boundary layer is not capable of transporting 
sufficient material, the surrounding high-viscosity fluid deforms, and the flow around 
the rigid body is that expected for a fluid of uniform viscosity (Stokes limit). I point 
out here that lubricating boundary-layer flow around a rigid body or a fluid drop can 
occur only when the body is driven predominantly by an intrinsic density difference 
(resulting from a difference in chemical composition) and not when the buoyancy 
results primarily from temperature differences. The dominance of compositional 
buoyancy is implicitly assumed in the analyses of Marsh & Kantha and Morris, and 
in the experiments of Ribe, as these authors neglect the thermal buoyancy of the hot 
fluid in the thermal boundary layer as well as the influence of the buoyancy acquired 
by all the fluid that has already passed through the boundary layer. Thus the subject 
of this paper can be viewed as the opposite limit : motion driven by thermal buoyancy 
alone. For this case, there is no pressure gradient available to force the buoyant 
low-viscosity boundary layer material from the front to the rear of the mass of 
buoyant material; rather it is dragged to the rear by viscous stresses. It will be shown 
that the effects of large viscosity variations are therefore minor and readily taken 
into account. 
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A model and similarity solution for high Rayleigh number viscous thermals is 
presented in $2. Experiments with isolated thermals in viscous oils are described in 
$83 and 4, and the measurements compared with the similarity solution in $5.  
Conclusions drawn from the comparison are discussed in $6. 

2. A boundary layer analysis for thermals with large Rayleigh number 
Consider a volume V, of hot fluid at temperature T, and dynamic viscosity Po placed 

in an unbounded, initially uniform environment of the same fluid with temperature 
T, and viscosity p, far from the hot region. We assume the density to be given by 
the linear equation of state 

and that the viscosity is a function of temperature only, generally decreasing as the 
temperature increases. There are initial temperature and density anomalies AG = 
To - T, and Apo = p, aAT,, respectively, and a net initial buoyancy B, = qAp, V, /p , ,  
where g is the acceleration due to gravity. A Rayleigh number for the flow is defined as 

where K is the thermal diffusivity (assumed constant) and v, = ,u,/p, is the 
kinematic viscosity far from the source of buoyancy. This formulation applies equally 
to systems in which a volume of hot fluid is emplaced and to those in which heat 
alone is injected. The conditions of interest throughout this paper are those under 
which Ra P 1 but a Reynolds number for the flow is very much less than one. 

Before discussing the subsequent flow it is useful to begin by recalling some features 
of creeping flow for the case in which there is no diffusion of buoyancy (the limit 
Ra = co). The flow is then reversible and the bulk rising motion of the buoyant 
material is described by Stokes’ law. When the buoyant fluid itself has a uniform 
density and viscosity, an exact result is that the sphere is the only compact steady 
geometry, there being zero normal stress everywhere on the outer surface (Batchelor 
1967 ; Kojima et al. 1984t). Hence, the buoyant fluid, once it reaches a steady form, 
takes the shape of a spherical bubble. The structure of the flow is sketched in figure 
1 (a) .  The sphere rises against gravity at  a velocity 

where Ap is the density deficit for the bubble relative to p,, D is the diameter of the 
bubble and ,u is the viscosity inside the bubble (Lamb 1932). This velocity decreases 
slightly with increasing viscosity ratio, with f = 1 a t  ,u 4 ,urn, f = f at ,u = ,urn, and 
f = 8 at ,u % ,urn. In  the non-diffusive case there is no instability on the spherical 
boundary and no mixing of fluids, even though surface tensions are assumed to be 
zero and the fluids miscible. 

On the other hand, diffusion of heat into the surrounding fluid may be significant 
in the real flow. As a result, the flow is irreversible and no longer symmetric about 
the horizontal plane through the centre of the bubble. The distribution of heat is then 
no longer steady. At large Rayleigh numbers the diffusion of heat must be confined 

t These authors showed that not even a toroidal ring of buoyant fluid is a steady solution in 
creeping flow. 
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(4 (b) 

FIQIJRE 1. Sketch of (a) the analytically derived steady streamlines in and around a bubble of 
buoyant fluid rising with small Reynolds number when the flow is reversible and (b) the model paths 
of fluid particles for the case in which buoyancy diffuses into a boundary layer. Streamlines are 
relative to the coordinate system moving with the centre of the bubble. The steady streamlines 
(a) are also the stream function for the unsteady flow in (a). In  (b) the dotted circle shows the 
boundary of the buoyant fluid, the hatched region is the thermal boundary layer, and the inner 
broken circle represents the size of the bubble at a time of order a / U  earlier. 

to a thin boundary layer similar to that which forms around a rigid or immiscible 
drop (e.g. Brignell 1975; Pan & Acrivos 1968). The expected nature of the flow is 
sketched in figure l ( b ) ,  where it is assumed that the presence of a thin buoyant 
thermal boundary layer will not significantly alter the spherical shape realized in the 
reversible flow. Furthermore, since time-dependent terms in the momentum equation 
for creeping flow are negligible, the unsteady motion is at  any time the same as steady 
Stokes flow, in this case flow past a sphere?. 

As it is heated, the material in the boundary layer becomes indistinguishable from 
fluid already inside the thermal. The newly heated material is buoyant and will tend 
to take part in the rising motion to an extent that depends upon the relative 
magnitudes of local viscous forces (vV2u) and buoyancy forces (gAp/p,). Noting that 
velocity gradients are small as a result of rapid diffusion of vorticity (vV2u 6 v, U / D 2 ) ,  
the ratio r of local buoyancy to viscous forces can be written as r 9 ApD2/p, v, U. 
With the velocity scale (3), this ratio satisfies r 9 1. Thus i t  seems that there is a strong 
tendency for the thin heated boundary layer to rise with the thermal rather than to 
be pulled away by viscous stresses into a warm trail$. So long as the circulation 
velocity within the thermal is comparable to U (a condition that holds whenp < pa),  
and the scale of the boundary layer is small compared with D, the newly heated 

t Taking the velocity of the thermal to be that for a spherical bubble, the Peclet number becomes 
Pe = U D / K  = Ra/2x and the Reynolds number becomes Re = U D / v ,  = Ra/2xPr. Hence flow with 
Re Q 1 requires Ra 6 2xPr, where Ra is defined in (2 ) .  

$ Kojima et al. (1984) show that there is no continuous enlargement of a buoyant torus due to 
viscous entrainment at zero Reynolds number, but that  a torus grows by viscous entrainment of 
surrounding fluid when terms of first order in Re are included. Thus viscous stresses tend to  
encourage entrainment rather than detrainment. 
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material will rise along the axis of the thermal (as shown in figure 1 b ) ,  despite being 
cooler than the rest of the thermal. Of course, some heat contained in an exponential 
temperature profile in the outer wing of the boundary layer may be swept away from 
the thermal. This heat loss may be small but its importance must be tested by 
laboratory experiments. The entrainment process can also be viewed in terms of a 
dividing particle path that approaches the rear stagnation point of a thermal in the 
coordinate system moving with the thermal. At this stagnation point in a reversible 
flow, radial stresses vanish. However, fluid approaching that same point in the 
diffusive case must be buoyant, and will rise. Hence the stagnation point and dividing 
particle path are likely to be displaced to a larger radius that will encompass most 
of the buoyant boundary layer. Once the newly heated material is wrapped around 
within the thermal, any remaining temperature and viscosity difference will be 
removed by further thermal diffusion. Thus I will assume that temperature and 
viscosity are almost uniform within the spherical region. 

For large Rayleigh numbers, the thickness 6 of the diffusive boundary layer is small 
(6 + D )  and scales as 

6 = k, gy, (4) 

where D / U  is the timescale for material to pass around the thermal and k, is a 
numerical factor. The rate of increase of the volume of hot material can be written 
as 

where k, is a second numerical factor. Combining (4) and ( 5 )  gives 

V = k,  UDS, ( 5 )  

V = k ,  k ,  U i D f ~ i .  (6) 

The velocity U is given by Stokes’ law (3). 
At this stage we make the important simplifying assumption that all of the hot 

boundary layer is entrained, causing the total buoyancy B, in the thermal to be 
conservedt. Thus 

ApV = Ap, V,. (7 1 
Eliminating the density anomaly from (7) and (3) leads to an expression for the 

(8) U = - RaK/D, 

where the Rayleigh number is constant in time. Substitution of (8) into (6) gives the 
differential equation 

f instantaneous velocity : 

27t 

DD = k ,  k ,  (3 - ~ R a : f i .  (9) 

The function f(,u/,uco) will generally vary with time. However, i t  is constant if the 
viscosity is uniform or if ,u + ,urn throughout the period of interest. I n  the worst case, 
f may change from 1.0 to 0.8 as the thermal rises and cools. The factors k, and k, 
are constant if the flow is assumed to be self-similar at all times. Solving (9) with f 
constant, and applying the simplest and most enlightening initial condition D = 0 

(10) 
at t = 0, we find D (Kt)i - = CRIJ-,  

DO DO 
t This assumption can be relaxed by allowing a partition of the boundary-layer heat flux into 

a portion remaining within the thermal and a portion left behind in a wake. The resulting similarity 
solution then involves two unknown constants. This approach is not presented, as (7)  leads to an 
adequate description of the data. 
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where the numerical constant C = (k, k2)i  (8 f /A"+. Hence, the rate of increase of 
diameter with time as given by (10) is greater for larger Rayleigh numbers. At  the 
same time, the boundary-layer thickness given by (4), (8) and (lo), 6 N Ra-f(Kt):, is 
smaller for larger Rayleigh numbers. This result is equivalently written as 6 /D - Ra-4 
and is identical to that found for diffusive boundary layers around immiscible drops 
(Brignell 1975). This similarity can be extended to show that, as a consequence of 
the shape of the circulation within the sphere, the boundary layer diverges as it 
approaches the axis a t  the rear to form a broader region of width - D Ra-: within 
the upward axial flow. 

Equation (10) is written in dimensionless form using the lengthscale Do = (6V,/n)t, 
the diameter of a sphere of volume V,, and the timescale D ~ / K  for thermal diffusion. 
However, a timescale that more usefully characterizes the flow is Do/' N Di/KRa, 
the time taken by the thermal to move through one diameter. Then (10) is better 
written as 

Substituting (11) into (8) gives the dimensionless velocity 

Hence, the velocity decreases with time as a result of dilution and cooling of the 
thermal. The velocity decrease is a result of the requirement that the viscous drag 
on the enlarging thermal must remain constant in order to balance the net driving 
force provided by the constant buoyancy. On integrating (12) over time, with the 
centre of the thermal lying at  z = 0 when t = 0, the vertical distance travelled is 

- = m(-&j, RaKt m = -Raa. f 1  
Z 

DO AC 

Hence, the distance travelled in dimensional terms is proportional to R d ,  a behaviour 
significantly different from that of both turbulent thermals (Scorer 1978) and 
Morton's (1960) extremely weak thermals. 

From (11) and (7), the temperature (and density) anomaly decreases with time 
according to 

Note that this similarity solution has no physical meaning near the virtual origin 
t = 0, z = 0, where AT+ 00 and the density in the thermal becomes negative. 

All of the variables may be expressed as functions of the height to which the 
thermal has risen by combining (13) with ( l l ) ,  (12) and (14). Thus 

D X C 2  
- = 2e(&-, e = -Ra+, 
DO 2f 

Hence the diameter increases linearly with distance from the virtual origin with a 
half-angle of expansion # given by tan-' q5 = e. The constant C must be determined 
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from experiments. The dependence of E on Rain (15) is again different from that found 
for turbulent thermals with large Reynolds numbers, for which E is approximately 
independent of the total buoyancy, and from that for the limit Ra+O, where 
E - Ra-l. 

Finally, the position of the virtual origin z = t = 0, at  which D = 0 and U+m, 
is related to the length scale Do. From ( 1 1 )  and (13), 

t = r&)(%), zo = f --(F) Rai Do, 
O c2 K R ~  

where to and zo are the time and position (measured from the virtual origin) at  which 
D = Do. 

3. Experimental apparatus and method 
3.1. The fluids 

For the experiments reported here (and for related experiments involving both 
chemical and thermal density contrasts) it was desirable to use viscous liquids that 
possessed a number of qualities making handling, observations and measurements 
practical, while making accessible a combination of large Rayleigh numbers and small 
Reynolds numbers. The latter requirement constrains the Prandtl number to 
Pr % Ra/2x (see footnote in $2). Thus, in order to use Ra - lo4 while maintaining 
Re 4 1, a liquid with Pr % 2 x lo3 is required. 

The liquids chosen are two members of a range of artificial polybutene oils 
manufactured by BP Chemicals Ltd. The ' Hyvis ' range provides transparent, 
odourless and non-irritating oils with viscosities (at 20 "C) between 1 and lo5 cm2 0. 
'Hyvis 3', with a nominal viscosity at 20 "C of lo2 cm2 s-l was used in most 
experiments, while 'Hyvis 30 ', with its nominal viscosity of lo3 cm2 s-l, wasemployed 
to give the smallest Rayleigh numbers without unduly reducing the total buoyancy 
(or lengthscale). Viscosities of these oils were measured at 5 "C intervals between 10" 
and 85 "C using capillary tube viscometers. The resulting curves of viscosity as a 
function of temperature are shown in figure 2 and have a precision better than 1 %. 
The viscosities vary much more rapidly than exponentially. Densities were measured 
to an accuracy of g cmP3 at 20°, 30°, 40" and 60 "C using a digital density 
meter. The measurements are accurately described by the linear density relation (1) 
with the following densities at 20 "C and coefficients of thermal expansion: 
pz0 = 0.8784 g cmP3, a = 6.51 x "C-l for 'Hyvis 3'  and pz0 = 0.8964 g ~ m - ~ ,  
a = 5.79 x "C-l for 'Hyvis 30'. Finally, the coefficient of thermal diffusion is 
estimated from manufacturer's data and by comparison with the properties of many 
other oils to be K = 8 x cm2 s-l ( +20 yo). Hence, the Prandtl numbers at  20 "C 
are Pr = 1.2 x lo6 and 1.8 x lo6. 

3.2. Apparatus 
Thermals were created by injecting a known volume of heated oil into a large tank 
of the same oil at  room temperature. The tank was 40 cm square and filled to a depth 
of 70 cm. The tank was insulated and kept in an air-conditioned room. Motions of 
this initially cold fluid due to the passage of a thermal were in many experiments 
made visible by injecting, before the run and at various heights, a number of 
horizontal lines of the same oil containing a small concentration of dye. These lines 
were injected from a syringe connected to a long vertical syringe tube that could be 
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FIGURE 2. The kinematic viscosity of ‘Hyvis 3’ and ‘Hyvis 30’ as functions of temperature. 

traversed slowly across the tank. Lines were positioned as close as possible to the axis 
of the tank, thus close to the axis of the thermal. These lines also served to reveal 
whether slow, large-scale convective motions due to a sidewall heat transfer were 
present. 

Oil to be injected was dyed and preheated for several hours in a metal piston and 
cylinder arrangement that was surrounded by a hot-water jacket connected to a 
constant-temperature bath. In  order to minimize heat transfer to the tank, the 
cylinder had to be disconnected from the tank at  all times, excepting during injection 
of hot oil. Hence, one end of the cylinder could be pushed into a plastic ‘source’ in 
the base of the tank just before the injection. The source had a stop-cock and an 
injection hole 0.2 cm in diameter, which released the hot fluid at a level almost flush 
with the inner base. Release adjacent to the flat base was chosen as the simplest 
practical geometry (and one of general interest), given that a release far from the base 
would involve a long injection tube with significant thermal effects as well as 
unknown viscous effects on the subsequent flow. The volume injected into the tank 
was measured to an accuracy of 0.3 cm3 directly from a calibration scale on the piston 
shaft and a correction was made for the small volume (0.25 cm3) of the connecting 
passage. 

3.3. Procedure 
Before each experiment the oil in the tank was stirred as much as practicable with 
a rod in order to minimize any vertical temperature gradient that may have been 
produced by heat transfer to the room, though temperature measurements near top 
and bottom revealed no measurable difference. The temperature in the tank was 
measured to 0.1 “C before every experiment. Horizontal dye lines were then injected, 
if desired, and a photograph taken to record their initial positions. The piston and 

5 FLM 166 
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cylinder containing hot dyed oil was then connected to the source in the base of the 
tank, and a desired volume of up to 36 cm3 injected. Injection took only 5-10 s. A 
digital clock was started at the beginning of the injection. Thereafter, photographs 
of the flow as projected onto a shadowgraph screen on the front of the tank were taken 
at  regular intervals. (Cin6 films were also made of several experiments.) Photographs 
included the clock and a square gridscale on the shadowgraph screen. As soon as 
possible after the injection, the cylinder was disconnected from the tank, as it was 
found that a small quantity of heat conducted through the plastic source could cause 
flow in the tank after a period of an hour or so. 

3.4. Isothermal control experiments 

In order to provide a comparison with the thermals, experiments were also carried 
out with miscible drops possessing no temperature anomaly but a small compositional 
buoyancy. ‘Hyvis 3’  was mixed with a medicinal oil of low viscosity and smaller 
density in proportions such that the density of the mixture (at 2OOC) was 
0.0106 g cm-3 less than that of ’Hyvis 3’. This mixture was then injected into the 
tank of ‘Hyvis 3’ using the same apparatus as for the other experiments, but a t  the 
same temperature as the oil in the tank. All liquids were completely miscible. The 
viscosity of the mixture was 4 cm2 s-l, giving a viscosity ratio of 0.043. Two injection 
volumes were used, both giving sphere diameters less than one tenth the width of 
the tank. (Diameters of thermals ranged from 1 4  cm.) These isothermal experiments 
served to calibrate the apparatus, particularly the influences of the rigid base, free 
surface and the sidewalls of the tank. 

4. Observations and definitions of measurements 
Each injection produced a nearly spherical blob a t  the source. Initial momentum 

of the fluid leaving the small hole was dissipated within a few seconds and had no 
effect on the subsequent flow. Figure 3 shows the development of a thermal with 
Ra = 1.65 x lo3, AT, = 70.0 “C and an initial viscosity ratio of 0.0125. As the hot oil 
rises away from the source, the blob first becomes tapered at the rear (figure 3a) .  A 
very small quantity of the dyed fluid cannot be carried away from the rigid base, 
and a trail connecting the source to the blob becomes longer and thinner with time. 
This trail exists throughout the experiment (though it usually becomes so thin as 
to be invisible) simply because motion on the axis of symmetry is continuous and 
purely vertical. It is important to realize that buoyant fluid does not continue to rise 
up to the thermal in the trail, as it does in the isothermal, continuous source 
experiments of Whitehead & Luther (1975) and Olson & Singer (1985). In the 
reference frame moving with the thermal (figure 1)  there must be a stagnation point 
on the axis behind the thermal, and it is there that the trail becomes thinnest. Below 
this point, fluid is moving away from the thermal, though i t  is being pulled upward 
relative to the tank. 

Soon after leaving the base, the rear of the dyed fluid is flattened, followed by the 
appearance of a cusp and the intrusion of non-dyed fluid (figure 3 b ) .  These are the 
first signs that ambient fluid is being entrained into the thermal. Once the cap 
(forward edge) of the thermal has reached some height, in this case four diameters 
from the source, the fluid with no dye has penetrated up to the cap and the dyed 
fluid is confined into an annular ring or torus (figure 3c) .  

The bright and dark bands on shadowgraph images indicate a large refractive-index 
gradient due to a large temperature gradient around the cap of the thermal. The 
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FIGURE 3. Shadowgraph images of a thermal in 'Hyvis 3' with Ru = 1.65 x los, V, = 2.4 em3, 
A% = 70.0 "C, andpo/p, = 0.0125. (f) is a plan view of the thermal when it is 40 em from the source. 
Two dye lines are visible in (f), and apparent deviations from axisymmetry are a result of camera 
angle only. The Reynolds number based on initial velocity and diameter is 1.8 x low3. A 5 cm square 
grid is drawn on the shadowgraph screen. 

5-2 
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persistence of this gradient between the oncoming fluid and the non-dyed fluid inside 
the thermal in turn indicates that the entrained fluid, which soon makes up the 
greater part of the volume of the thermal, is hot and only distinguished from the 
injected fluid by the presence or otherwise of dye. A large temperature gradient is 
not visible at the rear of thermals because it is spread, rather than sharpened, by the 
inward radial velocity. When the bounds of the thermal at  this and later stages of 
development are described by a spherical surface coincident with the large temperature 
gradient at the cap and slides, it is found that the centre of the torus of dyed fluid 
lies slightly above the horizontal equator of the sphere (i.e. in the forward 
hemisphere). 

Figure 3 ( d )  and (e) show later stages in the evolution, and the way in which 
horizontal dye lines lying sufficiently close to the axis are entrained. The lines rarely 
lie exactly on the axis and are therefore advected around the side of the thermal 
closest to or farthest from the camera. A segment of each line may enter the thermal 
boundary layer where the line approaches closest to the thermal. The first and second 
lines have been entrained in figure 3(e). The displacement of dye lines also shows a 
large vertical transport of ambient fluid that is not assimilated into the thermal. These 
displacements are discussed further in Griffiths (1986a). Figure 3 (f) shows a plan view 
of the thermal, in which the torus of dye is obvious. This torus is simply a passive 
‘chemical ring’ containing the injected fluid. It is not a vortex ring (vorticity has 
diffused to infinity), nor can i t  contain any significant concentration of heat. 

Figure 4 shows varius stages in the rise of a thermal with much larger Rayleigh 
number (Ra = 9.1 x lo3, ,u,,/,ucx, = 0.0125). Qualitative features of the flow are the 
same as for the experiment in figure 3, excepting that the sharp temperature front 
around the thermal shows no signs of diminishing throughout the thermal’s rise 
through the depth of the tank. All three dye lines are entrained and their circulation 
inside the thermal could be traced. By way of contrast, figure 5 shows two stages 
during an experiment with Ra = 312 using ‘Hyvis 30’. The flow at this smaller 
Rayleigh number is characterized by greater elongation of the cross-section of the 
torus, which is also farther from the equator of a fitted sphere (see Griffiths 1986a), 
and a more rapid increase with height of the diameter of the thermal. As at all other 
conditions, the front stagnation point is marked by a small amount of dyed fluid a t  
the junction of a thin line of dyed fluid along the axis of symmetry and a thin surface 
of dye over the cap of the thermal. 

For the purposes of finding the position and velocity of thermals from the 
photographic sequence, the position of the cap was defined as the position of the 
temperature front on the axis of symmetry or, when this was not sufficiently clear, 
the position of the very small patch of dye trapped at the forward stagnation point. 
Thus the position of the cap is always well defined. Similarly, a well-defined diameter 
that is readily measured is the maximum diameter of the dyed fluid. While this 
dimension must always be slightly smaller than the true diameter based on 
temperature, the two should remain approximately in the same proportion throughout 
an experiment. Each measurement of position and diameter was corrected for 
parallax errors arising from the distances from the light source to the thermal (7 m) 
and the thermal to the shadowgraph screen (20 cm). Measurements taken after the 
cap of the thermal has approached to within three diameters from the free surface 
were discarded as the proximity of the surface caused more rapid horizontal 
spreading. 

Figure 6 shows shadowgraph photographs of an isothermal control experiment 
using the less dense mixture of ‘ Hyvis 3 ’ and medicinal oil. In  this case, any diffusion 
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FIQURE 4. Shadowgraph images of a thermal in 'Hyvis 3' with Ra = 9 . 1 0 ~  lo3, V, = 13.0 cms, 
A% = 70.0 "C and po/pa, = 0.0125. The enlarged view in (c) waa taken 140 s after injection when 
the cap is 37.7 cm above the base of the tank. The Reynolds number based on the initial velocity 
and diameter is 9.8 x 
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FIGURE 5. Photographs of a thermal in 'Hyvis 30' (silhouetted against a bright background) with 
Ra = 312, V, = 20.5 cm3, AT, = 48.7 "C, po/pm = 0.024. The initial Reynolds number is 2.8 x 
Photographs were taken (a )  3 min 30 s and (a) 26 min 33 s after injection. 

FIGURE 6. Shadowgraph images of en isothermal bubble of miscible fluid for which there is 
practically no diffusion of buoyancy over the length- and timescales of the experiment. 
Ap = 0.0106 g .V, = 11.3 em3, Y, = 90 ems s-', po/pm x 0.04 and Re = 2.0 x lo+. The 
effective Rayleigh number based on the chemical diffusion coefficient is of order lo*. 
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of buoyancy is insignificant within the duration of the experiment since the species 
diffusion coefficient is several orders of magnitude smaller than that of heat. No 
significant entrainment occurs and the injected fluid remains within a spherical 
bubble throughout the depth of the tank. Some weak striations visible inside the 
bubble are a result of a small amount of mixing during injection, and serve nicely 
to reveal the shape of circulation inside the sphere. These bubbles did not slow down, 
whereas entraining thermals often became so slow before reaching the top of the tank 
that measurements were terminated because there was a risk that the thermal might 
have begun to be carried by undetectably slow, large-scale convective motions which 
might have been present. 

5. Experimental results 
5.1. Height of rise and velocity of thermals 

The measured position of each thermal is plotted against time in figure 7. Here zL 
is the height of the cap above the base of the tank, t, is the time as recorded on the 
clock and z’ = zL(tL = 0). The latter position was found by plotting zL( tL)  on linear 
scales and extrapolating a straight-line fit to the first four measurements a short 
distance back to t ,  = 0. Since the clock was started at  the time of injection, z‘ is always 
close to one diameter Do. The experiments have been separated according to their 
initial temperature anomaly, since the corresponding differences in viscosity ratio 
were expected to cause small differences in behaviour. The Rayleigh number and 
initial volume for each experiment are given in table 1. The positions of two 
isothermal buoyant bubbles are also plotted, along with the best fit of constant 
velocity for these two trajectories and the theoretical trajectory given by Stokes’ law 
for the case p/po 4 1 in an unbounded fluid. 

Isothermal bubbles rise throughout the depth of the tank with no significant 
deviation from a constant velocity, excepting for a decrease in velocity within two 
diameters of the free surface. No variation of velocity can be detected as the drop 
moves away from the vicinity of the rigid base. However, their velocity throughout 
the tank is 22 % smaller than that predicted by Stokes’ law (3) for the appropriate 
viscosity ratio. Given that bubble diameters are 2.4 cm and 2.8 cm, or 0.07 times the 
width of the tank, a velocity deficit of close to 20% is expected to result from an 
increased drag associated with the presence of the sidewallst. Effects of interfacial 
tension and interfacial impurities are a further possible cause of the measured velocity 
deficit, since finite interfacial tensions are possible at sharp interfaces, even between 
two miscible fluids. The effects of interfacial tension on isothermal miscible drops 
of corn syrup/water mixtures are discussed by Kojima et al. (1984), where tensions 
for drop diameters an order of magnitude smaller, and velocities much larger, than 
those used here are inferred to be three orders of magnitude smaller than that 
appropriate to an air-water interface. Tensions decrease with decreasing velocity 
because diffusion smears the interface. In the present experiments, the large drop 
diameters and small velocities strongly suggest that interfacial effects are negligible, 
a conclusion supported by observations in other experiments using the same oils 
(Griffiths 19863), where an extremely thin spherical film forms over the forward 
hemisphere of thermals with combined compositional and thermal buoyancies. Hence 

t The exact influence of sidewalls was not computed for the square box. Rather, the above figure 
is based on Happel & Brenner’s (1965) analysis for a rigid sphere moving along the axis of a cylinder 
(giving a 17 % velocity deficit) and on double the drag experienced by a body moving along the 
mid-plane between two parallel walls (giving a 22 % velocity deficit). 
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FIQURE 7. Vertical position of thermals and isothermal bubbles as functions of dimensionless time. 
Height of the cap is measured from the initial position z' at t, = 0,  where t, is the time on the 
laboratory clock. Results are shown for three initial temperature anomalies (a) 70 "C, (a) 40 "C and 
(c) 20 "C. The injected volume and Rayleigh number for each experiment are given in table 1. Data 
for isothermal bubbles are shown in (a) (filled and open squares) and are well described by a 
trajectory of constant velocity (solid line). This velocity is 22% smaller than that predicted by 
Stokes' law for a sphere with p/pw < 1 in an unbounded fluid (broken line). The solid line is 
reproduced in (b) and (c )  for reference. The velocity of thermals decreases with time more rapidly 
for smaller Rayleigh numbers. 

the discrepancy from Stokes' law is treated entirely as a calibration of the effects of 
the finite size of the tank and the velocity of thermals will be compared to the 
measured rather than theoretical velocity of isothermal bubbles. 

While thermals are within three to four diameters from their initial position they 
rise with a nearly constant velocity. For all thermals with initial temperature 
anomaly of 70 "C (clo/pw = 0.0125), this initial velocity is equal to that of the 
isothermal bubbles (for which p/pw x 0.04). The same is true for the largest of those 
thermals with AT, x 40 "C (po/pw x 0.05). This result is consistent with Stokes' law, 
which predicts that the rise velocity is effectively independent of viscosity ratio 
for p/pm % 1. Smaller thermals with AT, x 40 "C begin to rise with velocities 
5-10 yo smaller than low-viscosity bubbles, while thermals with AT x 20 "C 
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Kl 
Ra 

A% 
("C) Symbol (cm3) - 70" + 36.0 2.5 x 104 

0 13.0 9.1 x 105 

X 2.5 1.85 x 103 

- 40" A 30.0 1.2 x 104 

A 6.0 4.2 x 105 

0 2.4 1.65 x lo5 

* 22.7 7.9 x 103 
v 13.2 4.6 x los + 8.0 3.26 x lo3 
0 8.2 2.9 x 105 
0 4.5 1.75 x 103 
X 3.5 1.22 x 10s 
A 2.3 7.9 x 1 0 2  

+ 36.0 1.12 x 104 
0 24.7 5.4 x 103 
X 24.7 5.4 x 103 
A 11.9 2.65 x 103 
0 12.5 2.50 x 103 
A 7.4 1 . 1 6 ~  103 
* 4.9 7.6 x lo2 
v 1.2 2.5 x lo2 

TABLE 1. Rayleigh numbers Ra and injected volume V, for each experiment. Three nominal 
temperature anomalies were used, but the precise temperature difference used to calculate Ra 
differs from the nominal value by up to 0.3 "C. The absolute temperature in the tank was in every 
case close to 20". Hence, the temperature difference of 70°C corresponds to a viscosity ratio 
po/pco = 0.0125, AT, - 40 "C to po/pm = 0.05 and AT, - 20 "C to po/pco = 0.16-0.20. Symbols are 
defined from figures 7, 8 , 9  and 11 

- 20" 

(po/pw = 0.16-0.20) have initial velocities as much as 20 % smaller. Allowing for an 
increase in viscosity ratio due to the more rapid cooling of smaller and slower thermals, 
these velocities too are consistent with Stokes' law. 

The initial constant velocity regime coincides with the period during which the 
structure of thermals is first developing and during which the rigid base may strongly 
influence the flow, hence the shape of the buoyant fluid. The first entrained fluid 
reaches the cap only near the end of this period, indicating that circulation within 
the sphere has undergone only +1 turnovers and that the flow is unlikely .to be 
self-similar. At the same time, it is a surprise to find that the proximity of the rigid 
base has no significant influence on the velocity of either isothermal bubbles or 
thermals. This does not necessarily imply that the base has no influence on the flow, 
rather that any variation with height of the additional drag on the buoyant fluid 
appears to be off-set by a changing shape of the bubble at small times. The motion 
of a liquid drop away from a wall requires further analysis. 

At larger times, the velocities of thermals decrease with time, the rate of decrease 
being greater for smaller Rayleigh numbers. Trajectories appear to approach the 
power law zL-z' - 4. However, we cannot be certain of this behaviour from figure 
7 as the height zL is an integrated property of the flow and as the virtual origins 
(judging from the slow rate of expansion of thermals, to be discussed later) must lie 
a large distance below the source. A test of the similarity solution presented in 92 
is best constructed by first locating the virtual origin in time for each thermal. Since 
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FIGURE 8. Inverse square of velocity for a number of thermals as function of time. No assumption 
about the location of a virtual origin is required when fitting the power law of (12) (straight lines). 
Extrapolation to U-2 = 0 gives the virtual original in time. Data are for ATo = 70 "C. Rayleigh 
numbers are given in table 1 .  

the velocity is an instantaneous property of the flow, we can plot on linear scales the 
inverse square of the dimensionless velocity as a function of the dimensionless 
laboratory time t,. The choice of the inverse square is suggested by (12). Some 
examples are shown in figure 8. Velocities are computed by taking the difference 
between successive measurements of the position z,, and therefore show considerable 
scatter. However, the results for all thermals show that there is a rapid transition 
from an initial regime of adjustment toward self-similar flow and motion away from 
the rigid base with nearly constant velocity, to one in which - t,. Hence, 
U - (tL-t*)-i ,  where the virtual origin at  t ,  = t* is found by extrapolating the 
straight lines of best fit backward to W 2  = 0 (as shown in figure 8). Because the form 
(12) gives large velocities near the virtual origin, the origin in time is not far from 
the time of injection. 

In  figure 9, the trajectories of figure 7 are plotted again, this time on linear axes 
and with the height ( zL-z ' ) /Do as a function of the square root of time measured 
from the virtual origin. Though the trajectory of isothermal bubbles has no virtual 
origin, it is adjusted to be at the same height as are thermals at t ,- t* = 0 and plotted 
here for reference. After the initial adjustment period (which we neglect), thermals 
are well described by the form (13) with t = tL- t*  (the straight lines on figure 9). 
Some experiments show a further decrease in velocity at large times, possibly as a result 
of an increasing sidewall influence as the diameter of thermals increases, or to a slow 
but cumulative loss of heat from the thermal. The slopes m of the straight lines in 
figure 9 are plotted against the Rayleigh number in figure 10. The power law of best 
fit is found to be m - Ru0.24fo~03. Since this result supports the predicted form 
m = qRui in (13), where q = f /nC, i t  is justified to find the :-power law of best fit: 
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FIGURE 9. Trajectories of thermals from figure 7, plotted aa functions of the square root of the 
dimensionless time t,-t*, which is the time from the virtual origin. (a) A% x 70°, (b)  A 4  x, 40°, 
(c) A% 2: 20 "C. The Rayleigh number for each experiment is given in table 1. Straight lines show 
that the data are described satisfactorily by the ti law when (zL-z')/Do > 5. For reference, the 
parabola in (a) shows the trajectory (starting from tL-t* = 0 )  for bubbles with a constant velocity. 

m = (0.14+0.01) Ra! (solid line on figure 10). In  fact, two values of q differing by 
approximately 10% are found when the data obtained for a temperature anomaly 
of 70 "C are considered independently from the data for the smaller temperature 
anomalies. The highest value is expected to describe the limit p/pm + O ,  where f = 1. 
Using this value of q, and including a systematic uncertainty of 30 % in the Rayleigh 
number due to uncertainties in total buoyancy and molecular properties, the constant 
C is evaluated as C x 2.0+ 0.4. 

5.2. Angle of expansion 
The diameters of thermals are plotted in figure 11 as functions of the vertical position 
zL of the cap. The diameter D is that measured from the photographic record, while 
the scaling length Do is that calculated for a sphere with the measured injection 
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volume. For the isothermal bubbles these two measurements gave D/Do = 0.96-0.98, 
values that remained constant until the bubble approached to within two diameters 
of the free surface. 

While within four to six diameters of the source, thermals are not spherical and 
undergo variations of diameter that appear to depend upon both the Rayleigh number 
and the viscosity ratio. These variations are probably due to the influence of the base 
of the tank and the adjustment toward self-similar flow. At later times, the results 
for most thermals are reasonably described by straight lines and therefore support 
the similarity solution (15)t. The absolute values of D during this period appear to 
depend upon the details of the early adjustment phase. From figure 11 it is seen that 
thermals with smaller Rayleigh numbers expand more rapidly with height than 
do thermals with larger Rayleigh numbers. The measured expansion rates E are 
plotted against the Rayleigh number on figure 12. The power law of best fit is 
E = 0.63Ra-(0.44*0*1). Since this result is consistent with (15) we fit the predicted 
:-power law to find E = (1.25 & 0.2) Rat and C = 0.9 f0.3. Although the above value 
for C is of the same order as that found from the velocity and height of thermals, 
it is worth evaluating the constant as precisely as possible. The value determined 
directly from measurements of the expansion rate is likely to be the more reliable 
of the two as it does not rely upon the consistency argument used in locating a virtual 
origin and plotting the trajectories in figure 9. On the other hand, expansion rates 
may have been slightly underestimated since the measured visible diameter of the 
dye ring at large times is likely to be up to 20% smaller than the actual diameter 
of the buoyant material. With these difficulties in mind, the value C % 1 is the best 
estimate available from the present data. 

7 The rate of expansion of an isothermal slender toroidal ring resulting from inertial effects, aa 
found to leading order in Reynolds number by Kojima et al. (1984), would give E - Re = 10-6-10-s. 
This expansion is much smaller than that observed for thermals, where some of the largest 
expansion rates are found for the smallest Reynolds numbers. 
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FIQURE 11. Diameters of thermals aa meaaured from their shadowgraph images and normalized 
by Do, as functions of the vertical distance from the source to the cap. Results for each initial 
temperature anomaly are shown separately as they involve different viscosity ratios: (a)  AT = 70'; 
(a) AT = 40"; ( c )  AT k: 20 "C. Rayleigh numbers are given in table 1. For most thermals, data are 
consistent with a straight line when zL > 5. 

6. Conclusions and application 
The flow induced by a given localized quantity of thermal buoyancy is considered 

for the case in which both the Prandtl number for the fluid and the Rayleigh number 
are large compared to one but Ra < Pr. Under these conditions, motion is characterized 
by a small Reynolds number. Since the flow is dominated by advection, the diffusion 
of heat causes only a negligible modification of the instantaneous flow field given by 
the solution for reversible flow around a spherical drop. Rapid diffusion of vorticity 
also ensures that the flow at any time is described by the steady Stokes solution, 
despite the slow time-dependence produced by thermal diffusion. A thin thermal 
boundary layer becomes buoyant on being heated, and is consequently assimilated 
into the 'thermal'. The resulting evolution and motion of the thermal are well 
described by a straightforward similarity solution with one empirically evaluated 
constant. The laminar entrainment leads to a continuous increase of the volume of 
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FIGURE 12. Expansion rates E for the radius of thermals as given by the slope (divided by two) 
of the straight lines in figure 11, as a function of Rayleigh number. The broken line is the power 
law of best fit and has slope -0.44. The solid line is B = 1.25 R d .  Data are distinguished according 
to the initial temperature anomaly: x , ATo = 70"; 0 ,  AT, x 40"; 0, AT, z 20 "C. 

buoyant material in such a way that the diameter is directly proportional to the height 
through which the thermal has risen. Entrainment also leads to a reshaping of the 
fluid that makes up the spherical thermal at any time-it becomes a torus of 
ever-increasing radius. This dye ring must not be mistaken for either a vortex ring 
or a concentration of heat, despite its qualitative similarity in appearance and 
evolution to large Reynolds number vortex rings, for it simply marks the location 
of the initially buoyant fluid. 

A major assumption of the model is that all of the heat in the boundary layer 
is entrained, conserving the total buoyancy of the thermal and preventing the 
formation of a warm trail. A more general solution allowing some loss of heat into 
a thermal wake can be formulated but has two numerical constants to be empirically 
evaluated and it cannot be compared unambiguously with the existing data. On the 
other hand, physical reasoning suggests that only a small heat loss is likely from the 
outer wing of the diffusive boundary, and the solution with constant buoyancy 
provides a satisfactory description of our experimental results. An ever-thinning trail 
of warm and dyed fluid is observed to stretch from the source to the thermal, but 
this does not imply a heat loss from the thermal. The trail is simply a result of the 
initial conditions, and can never be broken. The empirical value of the numerical 
constant C x 1 implies that the unknown proportionalities in the expressions for the 
boundary-layer thickness (4) and volume flux ( 5 )  satisfy k, k, x 2,  a result that is 
consistent with the conclusion that practically all of the warm boundary layer is 
entrained. 

The similarity solution and experimental results for extremely viscous thermals 
with large Rayleigh numbers (2.5 x lo2 < Ra < 2.5 x lo4) are significantly different 
from previous results for weak thermals (Ra-tO) and for turbulent thermals. 
Thermals at Ra+O are predicted to increase in size according to D - Ra-lz, while 
inviscid vortex rings are found to enlarge at an angle independent of the Rayleigh 
number. The results reported here give D - Ra-tz. Similarly, the height risen by 
thermals is z - Rad a t  Ra+O, z - Rdti for large Reynolds numbers, and z - Rdd 
for the present conditions (Re < 1, Ra % 1). It is interesting to note that the data 
of Schlien & Thompson (1975) for thermals with Ra = 103-104 and Re x 20 suggest 
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the distance travelled is proportional to Rat, a behaviour intermediate to those now 
established for small and large Reynolds numbers. However, the latter result is 
uncertain because the effect on the trajectory of a separation of source and virtual 
origin was not considered. 

The effects of large viscosity variations are of particular interest. A strongly 
temperature-dependent viscosity simply results in a smaller rate of viscous dissipation 
inside thermals and a translation velocity as much as 25 % larger than that expected 
in an isoviscous fluid. The model presented here is not in principle restricted to 
single-state flow and can be applied (perhaps with a modification for latent-heat 
effects) to describe the behaviour of a mass of molten material such as magma pushing 
upward through a viscous solid. The model requires only that 1 < Ra < Pr and that 
density differences are due to temperature differences alone. Finally, the model and 
observations presented here are relevant to studies of thermal convection in very 
viscous fluids such as the Earth’s solid mantle and liquid magma stored in magma 
chambers. The results are employed in an accompanying article (Griffiths 1986a) in 
order to predict motions induced in the surrounding fluid by a thermal and to further 
explore the formation of the toroidal ring. Implications for motions of individual 
isolated thermals (or ‘diapirs’) in the mantle will be discussed in detail elsewhere 
(Griffiths 1986~) .  The model is also applicable to solute-driven convection in water 
if the diffusion coefficient for heat is replaced with a solute diffusion coefficient and 
the density variation due to thermal expansion is replaced by the solutal density 
difference. Since solute diffusion coefficients are at least two to three orders of 
magnitude smaller than that of heat, the effective Prandtl (Schmidt) number is large 
( -  lo3) even in aqueous solutions of small viscosity. The regime 1 < Ra < Pr (giving 
Re < 1) is therefore of interest for small droplets of solute-laden water sinking 
through a relative freshwater environment (or relatively fresh droplets rising through 
a salty environment) as occurs below (and above) double-diffusive salt-finger 
interfaces. The expansion of thermals and formation of toroidal rings at small 
Reynolds numbers also imply that aggregates of suspended particulate matter within 
viscous drops will be more effectively dispersed when there is a significant temperature 
difference between the drops and the surrounding fluid. 

The experiments were made possible by the excellent technical assistance of Mr 
J. Micallef and photographic assistance of Mr R. Wylde-Browne. 
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